

Многоосные грузовые вагоны – ноу-хау для повышения эффективности перевозок

Развитие конструкции вагонов колеи 1520 Возможные транспортные решения

Текущая ситуация

- Подвижной состав и его конструктивные особенности оказывают существенное влияние на эффективность перевозок
- Транспортные решения должны:
 - ▶ Обеспечивать конкурентный способ перевозки грузов
 - Учитывать все особенности рынка перевозок, в том числе состояние инфраструктуры
- До настоящего времени развитие конструкции вагона проводилось в рамках нескольких направлений:
 - Увеличение габаритов подвижного состава
 - Увеличение осевой нагрузки вагона

Увеличение габаритов подвижного состава

Увеличение длины вагона

Увеличение осевой нагрузки вагона

Тележка 18-100

- ▶ Осевая нагрузка 23,5 тс
- Ресурс до первого ДР − 250 тыс. км

Тележка ОВК 25 тс

- Осевая нагрузка 25 тс (до +10% к грузоподъемности вагона)
- Ресурс до первого ДР − до 1 млн. км

Тележка ОВК 27 тс

- Осевая нагрузка 27 тс (до +20% к грузоподъемности вагона)
- Ресурс до первого ДР − 800 тыс. км

Как дальше «расти» конструкции для повышения эффективности перевозок?

Возможные пути решения задачи повышения эффективности перевозок

Применение вагонов сочлененного типа

Увеличение провозной способности сети

Сочлененный полувагон

+20% к погонной нагрузке

Сочлененный хоппер

к погонной нагрузке

Увеличение объема вывозимого груза

Сочлененная цистерна для перевозки СУГ

перевозимого груза

больше

объема

Сочлененная цистерна для перевозки нефти и нефтепродуктов

Сочлененная платформа

+14%

Увеличение провозной способности сети при перевозке насыпных грузов

Полувагон сочлененного типа

- Внедрение сочлененных полувагонов позволит существенно повысить пропускную способность Восточного полигона
- При замене существующего парка 23,5 тс на сочлененные вагоны нового поколения:
 - Увеличение провозной способности сети на +42%
 - Сокращение потребного парка вагонов на -41%
 - Повышение эффективности перевозок

При сохранении стандартной длины состава (условные 71 вагон)

Наименование параметра	12-6877-02	12-6877
Тип вагона	Полувагон с разгрузочными люками	Полувагон с глухим кузовом
Количество секций	2	2
Грузоподъемность, т	114,5	117
Погонная нагрузка, т/м	7,67	8,88
Объем, м ³	142	135
Количество разгрузочных люков	20	Нет
Количество осей	6	6
Модель тележки	18-9855	18-9855
Максимальная расчетная статическая нагрузка, кН (тс)	245 (25)	245 (25)

Хоппер сочлененного типа

- Внедрение сочлененных вагонов-хопперов позволит повысить эффективность перевозок минеральных удобрений и зерна
- При замене существующего парка 23,5 тс на сочлененные вагоны нового поколения:
 - Увеличение провозной способности сети на **+22**%
 - Сокращение потребного парка вагонов на -38%
 - Повышение эффективности перевозок

При сохранении стандартной длины состава (условные 71 вагон)

Наименование параметра	19-6978	19-6978-01
Специализация	Минеральные удобрения	Зерно и продукты перемола
Количество секций	2	2
Грузоподъемность, т	113,5	113,5
Погонная нагрузка, т/м	7,74	7,74
Объем, м ³	160	160
Количество разгрузочных/ загрузочных люков	8/12	8/12
Количество осей	6	6
Модель тележки	18-9855	18-9855
Максимальная расчетная статическая нагрузка, кН (тс)	245 (25)	245 (25)

Технология перевозок в контейнерах и сменных кузовах

ПРЕИМУЩЕСТВА

Не требуется модернизировать инфраструктуру портов и железной дороги

Эксплуатация круглый год Решение проблемы сезонного спроса на вагоны разного типа

Малый вагонный парк

Погрузка или разгрузка кратно быстрее без необходимости складирования на склад

СИСТЕМНЫЕ ЭФФЕКТЫ ТЕХНОЛОГИИ СМЕННЫХ **КУЗОВОВ**

- Универсальность Гибкое реагирование на факторы сезонности и изменения спроса
- Новые логистические направления Использование для перевалки неспециализированных портов
- Расширение мощности имеющихся терминалов
- Эффективность перевозок Погрузка до 112 т и сокращение простоев подвижного состава
- Инфраструктурный эффект Увеличение пропускной способности
- Оптимизация инвестиций в специализированный подвижной состав

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛАТФОРМЫ

19,54 M

длина по осям сцепления автосцепок

122,5 T

грузоподъемность платформы

ТИПЫ КУЗОВОВ

Для зерна и минеральных удобрений

Погрузка

осевая

вагона

нагрузка

Объем

111,3 тонн 3 кузова на вагон 50-54 м³

Варианты выгрузки:

- через торцевой люк
- через разгрузочные люки в полу

Для навалочных грузов

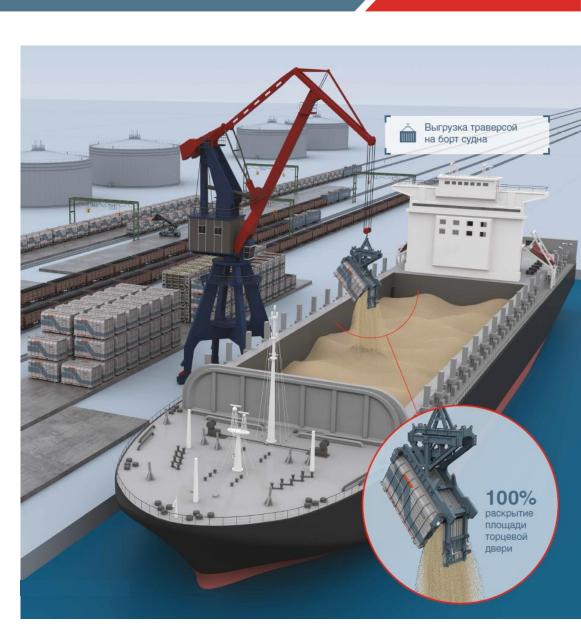
Погрузка

Объем 52 M³

112 тонн 3 кузова на вагон

Варианты исполнения:

- с крышей
- без крыши



Для лесоматериалов

Объем

156 m³

3 кузова на вагон

Увеличение провозной способности сети при перевозке наливных грузов

Цистерна сочлененного типа для СУГ

- У Экспортная направленность перевозок
 - Тенденция роста мирового отребления СУГ как более эффективного и экологичного топлива
- Тенденция к росту перевозок легковесных фракций СУГ
 - Парк цистерн 23,5 тс «малокубовый» – до 85 м³
 - Неэффективное использование парка недогруз **до 20%**
 - Необходимо создание эффективного транспортного решения, эффективного для перевозки «легких» фракций
- Сочлененные вагоны полное использование грузоподъемности вагона

Наименование параметра	Значение
Количество секций	2
Грузоподъемность, т	90
Объем, м ³	163,1
Количество осей	6
Модель тележки	18-9855
Максимальная расчетная статическая нагрузка, кН (тс)	245 (25)

Цистерна сочлененного типа для нефтепродуктов

- Выбытие темных нефтепродуктов и сырой нефти из структуры железнодорожных перевозок и повышение доли светлых нефтепродуктов:
 - развитие сети трубопроводов
 - масштабная модернизация НПЗ
 - повышение глубины переработки
- Необходимо создание эффективного транспортного решения, оптимизированного под перевозку «светлых» грузов
 - Неэффективное использование парка – недогруз 10-20% от грузоподъемности вагона
- Сочлененные вагоны полное использование грузоподъемности вагона

Наименование параметра	Значение
Количество секций	2
Грузоподъемность, т	108
Объем, м ³	160
Количество осей	6
Модель тележки	18-9855
Максимальная расчетная статическая нагрузка, кН (тс)	245 (25)

Благодарим за внимание!

DBK

Научно-производственная корпорация «Объединенная Вагонная Компания» 115184, Россия, г. Москва, ул. Новокузнецкая, д. 7/11, стр. 1 Тел. +7 (499) 999 15 20