

ПО НАПРАВЛЕНИЮ РАЗВИТИЯ «СКВОЗНОЙ» ЦИФРОВОЙ ТЕХНОЛОГИИ «КОМПОНЕНТЫ РОБОТОТЕХНИКИ И СЕНСОРИКА»

Предмет ДК: описание сквозной технологии «Компоненты робототехники

и сенсорика» и перечень субтехнологий, включая перспективные востребованные решения на их основе

Определение

Сквозная цифровая технология - Компоненты робототехники и сенсорика

совокупность субтехнологий, определяющих методы цифрового моделирования, проектирования, управления и очувствления механических систем и их компонентов, оказывающих наиболее существенное влияние на развитие российских рынков или отраслей

УГТ субтехнологии определялся по отечественной/зарубежной компании/продукту лидеру в данной области

Субтехнологии

Сенсоры и цифровые компоненты РТК для человеко-машинного взаимодействия

Человеко-машинные интерфейсы различных типов, компоненты и средства дистанционного взаимодействия робототехнических систем с человеком, методы взаимодействия с людьми в рамках сервисной и социальной робототехники, вопросы безопасности при непосредственном взаимодействии робота и человека

Технологии сенсорно-моторной координации и пространственного позиционирования

Технологии взаимодействия роботов с объектами окружающей среды, их захват и перемещение на базе классических методов моделирования и управления на основе физических и теормеханических моделей, низкоуровневое программное обеспечение систем управления реального времени, в том числе систем диагностики и отказоустойчивых систем

Сенсоры и обработка сенсорной информации

Технологии создания новых сенсоров, сенсорных систем и методов обработки сенсорной информации на базе детерминированных подходов, технологии комплексирования и синхронизации разнородных сенсорных данных, облачные платформы сенсоров и робототехнических средств, средства работы с телеметрией и телеуправлением.

УГТ

РΦ

Мир

Востребованные решении

- 1. Роботизированная реабилитация с использованием человеко-машинных интерфейсов, автоматизированной механотерапии и экзоскелетов
- 2. Системы дистанционного управления для робототехнических систем на основе современных интерфейсов с силомоментной обратной связью
- 3. Медицинские интерфейсы, основанные на новых бионических принципах для восстановления и расширения физических возможностей человека
- 1. Цифровые системы управления приводов с адаптивно настраиваемой жесткостью для задач soft robotics
- 2. Симуляторы и эмуляторы робототехнических и сенсорных средств на базе физических и теормеханических моделей для разработки и верификации систем управления
- 3. Системы моделирования и управления роботами на базе физических принципов и детерминированных моделей для повышения их энергоэффективности за рекуперации энергии и оптимизации выполняемой работы
- 1. Сетевые системы сбора, анализа интерпретации сенсорной информации с поддержкой технологии Plug&Play для сенсоров и робототехнических комплексов
- 2. Мультисенсорные цифровые устройства с использованием методов двухмерной и трёхмерной интеграции компонентов и алгоритмов обработки разнородной информации
- 3. Чувствительные элементы сенсоров физических величин различных типов для мониторинга и моделирования окружающей среды, химических сенсоров для мониторинга состояния живых организмов

РΦ

Мир

Периметр «сквозной» цифровой технологии

Описание субтехнологий

1

Сенсоры и цифровые компоненты РТК для человеко-машинного взаимодействия

Человеко-машинные интерфейсы различных типов, компоненты и средства дистанционного взаимодействия робототехнических систем с человеком, методы взаимодействия с людьми в рамках сервисной и социальной робототехники, вопросы безопасности при непосредственном взаимодействии робота и человека

Архитектура «сквозной цифровой технологии»

Технологии и интерфейсы ассистивной робототехники

Технологии дистанционного взаимодействия человек-робот

Технологии сервисной и социальной робототехники

Технологии безопасного взаимодействия человека с РТС

Периметр «сквозной» цифровой технологии

Описание субтехнологий

2

Технологии сенсорно-моторной координации и пространственного позиционирования

Технологии взаимодействия роботов с объектами окружающей среды, их захват и перемещение на базе классических методов моделирования и управления на основе физических и теормеханических моделей, низкоуровневое программное обеспечение систем управления реального времени, в том числе систем диагностики и отказоустойчивых систем

Архитектура «сквозной цифровой технологии»

Алгоритмы и технологии управления приводами с сенсорами обратной связи

Технологии разработки низкоуровневого программного обеспечения систем управления реального времени

Алгоритмы и технологии сенсорномоторной координации

Симуляторы и эмуляторы робототехнических и сенсорных средств на базе физических и теормеханических моделей

Периметр «сквозной» цифровой технологии

Описание субтехнологий

3

Сенсоры и обработка сенсорной информации

Технологии создания новых сенсоров, сенсорных систем и методов обработки сенсорной информации на базе детерминированных подходов, технологии комплексирования и синхронизации разнородных сенсорных данных, сетевые платформы сенсоров и робототехнических средств, средства работы с телеметрией и телеуправлением.

Архитектура «сквозной цифровой технологии»

Сетевые платформы сенсоров и робототехнических средств, включая промышленный интернет и средства работы с телеметрией и телеуправлением

Цифровые контактные и бесконтактные сенсоры и алгоритмы извлечения и обработки информации, включая возможность автономного принятия решений

Алгоритмы и технологии комплексирования и синхронизации разнородных сенсорных данных

Приоритезация субтехнологий

Субтехнология	Критерий 1	Критерий 2	Критерий 3	Критерий 4
Сенсоры и цифровые компоненты РТК для человеко - машинного взаимодействия	4	3	3	5
Технологии сенсорно - моторной координации и пространственного позиционирования	4	3	2	5
Сенсоры и обработка сенсорной информации	4	2	3	5

Методология

Критерии приоритезации*:

Критерий 1 — Наличие потребности ведущих компаний и организаций и кол-во потребителей технологии (ёмкость рынка согласно области применения)

Критерий 2 — Готовность технологии к внедрению (степень развития технологии и т.д.)

Критерий 3 — Наличие инфраструктуры производителей (доступность комплектующих и материалов и др.)

Критерий 4 — Научный потенциал

^{*}Оценка критерия приоритезации : 1-низкий , 2-ниже среднего ; 3-средний ; 4-выше среднего ; 5-высокий

Оценка экспортного потенциала

Экспортный потенциал Инвестиции государства Количество стартапов Лидирующие решения Количество патентов Система управления Microsoft **GTEC** Сенсоры и цифровые Страна-(имеются сильная В РФ Странакомпоненты РТК для 494 лидер 30 научная школа и 497 NEUROBOTICS нет лидер Китай человеко-машинного EMOTIVECI программисты) в РФ в РФ США данных 3364 взаимодействия Система детектирования REX SCHUNK • ° действий пользователя maxon

DLR Projektträger

ROBOTICS Технологии сенсорно -Страна-\$2,5 Страна-Системы управления лидер моторной координации 409 39 лидер **ANY** botics 263 (Наличие сильной США МЛН и пространственного в РФ в РФ Китай научной школы и \$537 в РФ позиционирования Fraunhofer Boston Dynamics 18958 программистов) МЛН Velodyne[®] SCHUNK • Страна-Программное Страна-Странав РФ в РФ Сенсоры и обработка лидер обеспечение (Наличие 23 лидер лидер **OVIDIA. SIEMENS** нет нет США сенсорной информации нет сильной научной школы в РФ нет данных данных 141 данных данных и программистов) **OMRON** (A) BOSCH

Мероприятия по преодолению барьеров

Описание барьера	Мероприятия	Срок реализации	Критерий достижения результата
Отсутствие стратегии развития отрасли В то время как в западных развитых странах есть серьезные программы для всей страны, в России пока такая программа отсутствует	Разработка дорожной карты	2019	Дорожная карта принята и на её реализацию выделено финансирование
Устаревшие и неэффективные программы вузов Традиционно сильная математическая подготовка студентов не достаточна для получения специалистов в области современной робототехники. Необходимо увеличение профильной подготовки по специальности на современном оборудовании за счёт уменьшения непрофильных предметов	Сетевая магистерская программа по робототехнике и сенсорике Контрактная аспирантура Программа подготовки специалистов для новых технологий Профессиональная переподготовка Программа академического обмена	2019 - 2024	Выпускники вузов конкурентоспособны на российском и международном рынке труда
Излишняя фокусировка на ВПК Если российский ВПК самодостаточен и не стремится к коммерциализации технологий, то зарубежные коллеги часто гордятся тем, что их военные рассекреченные технологии находят мирное применение	Программы стимулирования предприятий ВПК для их перехода на выпуск гражданской продукции	2019 - 2024	Увеличение выпуска высокотехнологичной продукции гражданского применения
Низкая себестоимость ручного труда Одним из основных сдерживающих факторов применения технологий робототехники в промышленном производстве является низкая стоимость ручного труда из-за невысокой квалификации работников	Программы повышения квалификации рабочего персонала	2019 - 2024	Повышения уровня квалификации работников в промышленной сфере и увеличение показателей оплаты труда
Не достаточное развитие законодательной базы в области коллаборативной и сервисной робототехники Законодательная база требуется для развития различных видов робототехники, связанной с непосредственным физическим взаимодействием роботов людьми	Принятие законов, регламентирующих применение коллаборативной и сервисной робототехники	2019 - 2020	Законодательная база регламентирует применение коллаборативной и сервисной робототехники
Отсутствие поддержки комплексных проектов Комплексные проекты, относящихся к разным министерствам в настоящее время не получают поддержки, хотя именно такие проекты могут стать наиболее успешными	Стимулирование и приоритетная поддержка комплексных проектов со стороны разных министерств	2019 - 2024	Реализуются комплексные проекты, финансируемые по линии двух или более министерств

Мероприятия по развитию технологии

Описание проекта	Сроки реализации	Инвестиции	кпэ	Ожидаемый результат
Национальный центр компетенций по робототехнике и сенсорике Площадка консолидации знаний и компетенций науки и бизнеса по сквозной технологии Формирование за счёт федеральной поддержки и крупных госкорпораций	2019 - 2024	300 млн.руб в год, 1 800 млн.руб на весь срок выполнения программы	Площадка для общения науки и бизнеса 200+ новых решений до 2024г	 Интегрирование науки и бизнеса Консолидация знаний в области робототехники и сенсорики Создание академического и бизнес сообщества Создание новых уникальных продуктов и решений Повышение конкурентоспособности российских предприятий
Профильные центры компетенций Основная площадка для развития субтехнологии в области робототехники и сенсорики Формирование при поддержке крупного бизнеса и региональной власти	2019 - 2024	500 млн.руб в год, 3 000 млн.руб на все срок выполнения программы (Финансирование на паритетных основе с регионом и бизнесом)	500+ новых решений для реального сектора экономики	 Интегрирование науки и бизнеса Консолидация знаний в области субтехнологии Создание новых уникальных продуктов и решений Повышение конкурентоспособности российских предприятий Налаживание взаимодействия науки и бизнеса
Бизнес сообщество Технологические компании являющиеся носителями технологий Крупный, средний и малый бизнес активно инвестирующий в развитие робототехники и сенсорики и имеющий внутренние профильные подразделения R&D	2019 - 2024	Прямых инвестиций не требуется	500+ робототехнических компаний в 2024г	 Создание бизнес сообщества Создание новых уникальных решений Увеличение реальных внедрений НИОКР в реальном секторе экономики Повышение уровня роботизации и производительности труда
Региональные и Отраслевые центры Центры подготовки кадров для цифровой экономики и решения прикладных задач региона Формируются при поддержке местной власти и бизнеса	2019 - 2024	Прямых инвестиций не требуется 20 - 50 млн.руб в год от региональных властей и бизнеса	20+ отраслевых и региональных центров Подготовка 1000+ специалистов по сквозной технологии ежегодно	 Увеличение внедрения и использование результатов НИОКР Подготовка кадров по сквозной технологии Повышение уровня роботизации и производительности труда

Проекты по развитию приоритетной субтехнологии: Сенсоры и цифровые компоненты РТК для человеко-машинного взаимодействия

Технологическая задача, краткое описание	Ожидаемый результат	Этап исполнения	Предлагаемый инструмент поддержки
Разработка и внедрение алгоритмов и технологий дистанционного устойчивого управления с силомоментной обратной связью для высокочувствительных хаптикс-устройств	5 уникальных решения в области ассистивной и сервисной робототехники, систем дистанционного управления (по областям внедрения в соответствие с целевыми показателями), обеспечивающих восстановление и передачу сил взаимодействия с точностью не ниже 95% и временным откликом не более 2 мс	2019-2024	
Разработка и внедрение систем мультимодального человеко-машинного взаимодействия для экзоскелетов и протезов для людей с проблемами опорно-двигательного аппарата	5 уникальных системы в области здравоохранения, охватывающих 80% двигательных функций и сценариев реабилитации верхних и нижних конечностей, мелкой моторики и позвоночника	2019-2024	Поддержка программ деятельности ЛИЦ
Разработка и внедрение алгоритмов оценивания внешних сил, моментов и геометрии контакта ускоренной и монотонной сходимости для безопасного физического человеко-машинного взаимодействия	3 уникальных решения для ассистивной, сервисной и строительной робототехники, снижающих риск получения травм при физическом взаимодействии с роботами в 10 раз по сравнению со статистикой использования существующих систем	2019-2024	Поддержка отраслевых решений Поддержка разработки и внедрения пром. решений Поддержка
Разработка и внедрение цифровых компонентов интерактивных интуитивных человеко-машинных интерфейсов	4 уникальных решения для управления робототехническими системами с подвижной базой (по областям внедрения в соответствие с целевыми показателями), обеспечивающих классификацию команд в не менее 80% сценариев управления с точностью не ниже 95% и суммарной задержкой на обработку не более 20 мс	2019-2024	региональных проектов Поддержка компаний-лидеров
Разработка и верификация алгоритмов структурно- параметрического синтеза и оптимизации конструкции коллаборативных и ассистивных роботов	3 уникальных решения для ассистивных роботов и робототехнических систем в здравоохранении, обеспечивающих на аппаратном уровне максимальное усилие при незапланированном контакте робота с человеком не более 10 % от грузоподъёмности робота с временем срабатывания не более 0,01 с	2019-2024	

Мероприятия по развитию приоритетной субтехнологии: Технологии сенсорно-моторной координации и пространственного позиционирования

Технологическая задача, краткое описание	Ожидаемый результат (с конкретным прогнозируемым влиянием на целевые показатели)	Этап исполнения	Предлагаемый инструмент поддержки
Разработка и внедрение алгоритмов и технологий моделирования, проектирования и управления на базе физических принципов для приводов с адаптивно настраиваемой жесткостью для задач soft robotics	4 уникальных решения в области энергоэффективной и безопасной коллаборативной робототехники в области мониторинга и обслуживания, строительства и прочих приложениях сервисной робототехники, с точностью генерации усилия до 0.05% от рабочего диапазона привода; позволяющие адаптивно настраивать эффективную жесткость позиционирования выходного вала с шагом до 0,1% от диапазона значений эффективной жесткости привода	2019-2024	
Разработка и внедрение алгоритмов и технологий моделирования, проектирования и управления на базе физических принципов для энергоэффективных робототехнических систем	4 уникальных решения в области сервисной робототехники, обеспечивающие за счет рекуперации и оптимизации работы энергетических подсистем роботов сокращение затрат энергии на перемещение роботов на 50% по сравнению с существующими мировыми аналогами	2019-2024	Поддержка программ деятельности ЛИЦ Поддержка
Разработка и внедрение алгоритмов и технологий сенсорно-моторной координации и планирования движений для захвата и перемещения физических объектов и контактного взаимодействия	6 уникальных решения, обеспечивающие захват, перемещение и контактное взаимодействие с ускорениями до 10 м/с2 со скоростями до 5 м/с для 95% сценариев, характерных для розничной торговли, здравоохранения, строительства и добычи, а также других приложений сервисной робототехники, включая жесткие, деформируемые, хрупкие, плоские протяженные, сыпучие и меняющие форму объекты	2019-2024	отраслевых решений Поддержка разработки и внедрения пром. решений
Разработка и внедрение алгоритмов и технологий расчёта и определения положений и траекторий робототехнических компонентов, и объектов физического мира	5 уникальных решения для робототехнических систем в области сельского и лесного хозяйства, систем мониторинга, строительства и добычи полезных ископаемых, в том числе в части динамического управления неполноприводными системами, системами с избыточным числом приводов и роботами с эластичными элементами, обеспечивающие определение положения и следования по спланированным траекториям с погрешностью не хуже 1%, и при перемещении в сложной динамической среде (доступно не более 10 % рабочего пространства робота или с запасом свободного пространства не более 10% от габаритов эффектора робота)	2019-2024	Поддержка региональных проектов Поддержка компаний-лидеров
Разработка и внедрение симуляторов и эмуляторов робототехнических и сенсорных средств н базе физических и теормеханических моделей для разработки и верификации систем управления	6 уникальных решения систем математического моделирования на базе физических принципов для систем 500 и более подвижными деформируемыми, упругими и разрушаемыми деталями с физически точными моделями, с точностью моделирования динамики положения механизмов до 99 % относительно натурного эксперимента за промежуток времени соответствующий десятикратному периоду работы механизма	2019-2024	

Мероприятия по развитию приоритетной субтехнологии: Сенсоры и обработка сенсорной информации

Технологическая задача, краткое описание	Ожидаемый результат (с конкретным прогнозируемым влиянием на целевые показатели)	Этап исполнения	Предлагаемый инструмент поддержки
1. Разработка сетевой системы сбора, анализа интерпретации сенсорной информации с поддержкой технологии Plug&Play для сенсоров и робототехнических комплексов	Сетевая система реального времени для сбора, анализа интерпретации сенсорной информации, поддерживающая технологию Plug&Play для 100+ одновременных подключений сенсоров и робототехнических комплексов с временем интеграции в систему менее 1 мин	2019-2024	
2. Разработка мультисенсорных цифровых устройств в том числе с использованием методов двухмерной и трёхмерной интеграции компонентов, а также алгоритмов обработки разнородной информации	5 уникальных решений в области сенсорных устройств доверенной электроники преобразователей информации с чувствительных элементов в цифровой код (по областям внедрения в соответствие с целевыми показателями), обеспечивающих точность определения параметров окружающей среды не ниже 99% и временным откликом не более 10 мс	2019-2024	ФСИ Фонд НТИ Поддержка программ
3. Разработка чувствительных элементов сенсоров физических величин различных типов (акустических, оптических, радиолокационных, температурных и других) для мониторинга и моделирования окружающей среды, химических сенсоров для мониторинга состояния живых организмов	5 уникальных решения в области чувствительных элементов (по областям внедрения в соответствие с целевыми показателями), обеспечивающих точность определения параметров окружающей среды не ниже 99% и временным откликом не более 10 мс	2019-2024	деятельности ЛИЦ и НОЦ Поддержка отраслевых решений Поддержка разработки и внедрения пром.
4. Разработка компонентной базы цифровых сенсоров и алгоритмов средств обработки информации от сенсоров	5 уникальных решения в области компонентной базы и алгоритмов средств обработки информации от сенсоров (по областям внедрения в соответствие с целевыми показателями), обеспечивающих точность определения параметров окружающей среды не ниже 99% и временным откликом не более 10 мс		решений Поддержка региональных проектов Поддержка компаний-лидеров
5.Разработка 50 отечественных датчиков на уникальных чувствительных элементах или принципах работы	25 отечественных датчиков производственного оборудования и процессов (вкл. безопасности процессов), 5 отечественных бионических датчиков, 20 отечественных датчиков мониторинга готовой продукции на уникальных чувствительных элементах или принципах работы. Не менее 3х отраслевых пилотных зон, разработаны меры стимулирования и выполнено пилотирование (испытания) созданных датчиков.	2019-2024	компании лидоров

Оценка требуемых ресурсов (млрд. руб)

	Грантовая поддержка малых предприят ий	Поддержка программ деятельности ЛИЦ	Поддержка отраслевых решений	Поддержка разработки и внедрения пром. решений	Поддержка региональных проектов	Поддержка компаний- лидеров	Предоставлен ие субсидий кредитным организациям	Итого по субСЦТ (бюджет)	Итого по субСЦТ (внебюджет)	Вне инструментов поддержки
1.Человеко-машинное взаимодействие	0,9	0,4	7,6	4	2,8	3	22	11,35	29,35	10
- в рамках бюджетных средств	0,45	0,2	3,8	2	1,4	1,5	2	11,35	-	10
- в рамках внебюджетного финансирования	0,45	0,2	3,8	2	1,4	1,5	20	-	29,35	-
2.Технологии сенсорно- моторной координации и пространственного позиционирования	1	0,4	6,9	3,5	2,25	1,5	11	8,775	17,775	10
- в рамках бюджетных средств	0,5	0,2	3,45	1,75	1,125	0,75	1	8,775	-	10
- в рамках внебюджетного финансирования	0,5	0,2	3,45	1,75	1,125	0,75	10	-	17,775	-
3.Сенсоры и обработка сенсорной информации	0,4	0,4	4,9	3,5	1,2	3	22	8,7	26,7	10
- в рамках бюджетных средств	0,2	0,2	2,45	1,75	0,6	1,5	2	8,7	-	10
- в рамках внебюджетного финансирования	0,2	0,2	2,45	1,75	0,6	1,5	20	-	26,7	-
Итого бюджетных средств	1,15	0,6	9,7	5,5	3,125	3,75	5	28,825	-	30
Итого внебюджетных средств	1,15	0,6	9,7	5,5	3,125	3,75	50	-	73,825	-
Всего	2,3	1,2	19,4	11	6,25	7,5	55	28,825	73,825	30

